Стороны нижнего основания: \({a_1},{a_2}, \ldots ,{a_n}\)
Стороны верхнего основания: \({b_1},{b_2}, \ldots ,{b_n}\)
Коэффициент подобия: \(k\)
Высота пирамиды: \(h\)
Апофема пирамиды: \(m\)
Периметры оснований: \({P_1}\), \({P_2}\)
Площади оснований: \({S_1}\), \({S_2}\)
Площадь полной поверхности: \(S\)
Площадь боковой поверхности: \({S_{\text{бок}}}\)
Объем пирамиды: \(V\)
Усеченная пирамида − это многогранник, заключенный между основанием пирамиды и сечением, параллельным основанию.
Усеченная пирамида является правильной, если она представляет собой часть правильной пирамиды.
Многоугольники, лежащие в основаниях усеченной пирамиды, подобны друг другу:
\(\large\frac{{{b_1}}}{{{a_1}}}\normalsize = \large\frac{{{b_2}}}{{{a_2}}}\normalsize = \large\frac{{{b_3}}}{{{a_3}}}\normalsize = \ldots = \large\frac{{{b_n}}}{{{a_n}}}\normalsize = \large\frac{b}{a}\normalsize = k\),
где \(k\) − коэффициент подобия.
Отношение площадей оснований
\(\large\frac{{{S_2}}}{{{S_1}}}\normalsize = {k^2}\)
Площадь боковой поверхности правильной усеченной пирамиды
\({S_{\text{бок}}} = m\frac{{{P_1} + {P_2}}}{2}\normalsize\),
где \(m\) − апофема (высота боковой грани), \({P_1}\), \({P_2}\) − периметры верхнего и нижнего оснований.
Площадь полной поверхности
\(S = {S_{\text{бок}}} + {S_1} + {S_2}\)