-
Выражение синуса через косинус
\(\sin \alpha = \pm \sqrt {1 - {{\cos }^2}\alpha } \)
Примечание: Знак перед радикалом в правой части зависит от того, в какой четверти находится угол \(\alpha\). Знак тригонометрической функции в левой части должен совпадать со знаком правой части. Данное правило справедливо также для других формул, приведенных ниже.
-
Выражение синуса через тангенс
\(\sin \alpha = \large\frac{{\tan \alpha }}{{ \pm \sqrt {1 + {{\tan }^2}\alpha } }}\normalsize\)
-
Выражение синуса через котангенс
\(\sin \alpha = \large\frac{1}{{ \pm \sqrt {1 + {{\cot }^2}\alpha } }}\normalsize\)
-
Выражение косинуса через синус
\(\cos \alpha = \pm \sqrt {1 - {{\sin }^2}\alpha } \)
-
Выражение косинуса через тангенс
\(\cos \alpha = \large\frac{1}{{ \pm \sqrt {1 + {{\tan }^2}\alpha } }}\normalsize\)
-
Выражение косинуса через котангенс
\(\cos \alpha = \large\frac{{\cot \alpha }}{{ \pm \sqrt {1 + {{\cot }^2}\alpha } }}\normalsize\)
-
Выражение тангенса через синус
\(\tan \alpha = \large\frac{{\sin \alpha }}{{ \pm \sqrt {1 - {{\sin }^2}\alpha } }}\normalsize\)
-
Выражение тангенса через косинус
\(\tan \alpha = \large\frac{{ \pm \sqrt {1 - {{\cos }^2}\alpha } }}{{\cos \alpha }}\normalsize\)
-
Выражение тангенса через котангенс
\(\tan \alpha = \large\frac{1}{{\cot \alpha }}\normalsize\)
-
Выражение котангенса через синус
\(\cot \alpha = \large\frac{{ \pm \sqrt {1 - {{\sin }^2}\alpha } }}{{\sin \alpha }}\normalsize\)
-
Выражение котангенса через косинус
\(\cot \alpha = \large\frac{{\cos \alpha }}{{ \pm \sqrt {1 - {{\cos }^2}\alpha } }}\normalsize\)
-
Выражение котангенса через тангенс
\(\cot \alpha = \large\frac{1}{{\tan \alpha }}\normalsize\)